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Abstract
An individual’s emotion perception plays a key role in affecting
our decision-making and task performances. Previous speech
emotion recognition research focuses mainly on recognizing the
emotion label derived from the majority vote (hard label) of
the speaker (i.e., producer) but not on recognizing per-rater’s
emotion perception. In this work, we propose a framework
that integrates different viewpoints of emotion perception from
other co-raters (exclude target rater) using soft and hard label
learning to improve target rater’s emotion perception recogni-
tion. Our methods achieve [3.97%, 1.48%] and [1.71%, 2.87%]
improvement on average unweighted accuracy recall (UAR) on
the three-class (low, middle, and high class) [valence, activation
(arousal)] emotion recognition task for four different raters on
the IEMOCAP and the NNIME databases, respectively. Further
analyses show that learning from the soft label of co-raters pro-
vides the most robust accuracy even without obtaining the target
rater’s labels. By simply adding 50% of a target raters annota-
tion, our framework performance mostly surpasses the model
trained with 100% of raters annotations.
Index Terms: Speech Emotion Recognition (SER), rater per-
ception, BLSTM-DNN, soft label learning

1. Introduction
The manner that we perceive and interpret other’s emotional
states affects how we interact and make decisions in daily life.
For example, when students perceive that a teacher’s actions as
positive emotion toward their performances, this perception has
a positive influence on a student’s learning goal and enjoyment
in English learning [1]. Also, negative emotion perception (e.g.,
anger and disgust) is one of the detrimental impact factors for
police to make an erroneous decision (shot or not) [2]. In the
field of sport, perceiving coaches’ behaviors as demonstrating
negative emotion harms elite child athletes performances [3].
In the buyer-seller interaction, the salesman, who can accurately
appraise the emotions of others, is often better at using a strat-
egy of customer-oriented selling and has a positive impact on
sales performance [4].

While there exists a wealth of research in advancing speech
emotion recognition (SER), most (if not all) of these works as-
sume by having multiple annotators to rate a sample of behav-
ior data, by taking the ‘majority vote’, it would correspond to
the ‘ground truth’ of the expressive subject’s (producer) emo-
tion states. This assumption ignores that emotion itself is very
individualized (both in terms of perceiving and expressing it),
which is known to be related to one’s own past experiences
[5]. Only recently, few works have investigated this individu-
alized aspect for SER. For example, Li et al. [6, 7] integrate
each speaker’s personal attributes through attention mechanism
to improve expressed (producer) emotion recognition, and Chou

et al. [8] recently models the subjectivity and differences across
annotators to improve classification performance on ‘majority
vote’ of expressed emotion. While there are works in music
and social circle recommendation system that has targeted ‘per-
annotator’ recognition [9, 10], limited if any of the works in
conventional SER setting has contributed in per-rater emotion
perception recognition.

In this work, we aim to improve per-raters emotion percep-
tion recognition system such that it could be further used to un-
derstand and potentially affect an individual’s decision making
across various application fields. However, in real life, it is un-
realistic to be able to collect large enough annotated data from
an individual rater, which hinders such a computational work
to be carried out. To mitigate this issue, our idea is to inte-
grate other rater’s (co-raters) existing labels of both soft (distri-
butional) and hard (majority-voted) labels, which ensures every
rated annotation is fully utilized [8], in advancing per-rater’s
emotion perception recognition.

With rapid development in the field of speech emotion
recognition, there are many types of methods to extract emo-
tional information from each utterance, such as acoustic-
prosodic feature extraction [11], spectrum [12, 13], and even
raw data [14]. In addition, many researchers design the learning
models vary with the characteristics of different feature inputs,
e.g., Convolutional Neutral Networks (CNN) [15, 16, 17], Bidi-
rectional Long Short-Term Memory (BLSTM) with attention
mechanism [18], Generative Adversarial Networks (GAN) [19],
or multi-head attention architecture [13, 20]. The recent state-
of-the-art models are usually combinations of these models and
inputs based on different setups, e.g., context information [21],
or multiple attribute [20]. However, there is no study on per-
rater emotion recognition in the field of SER to our knowledge;
hence, in this work, we use the BLSTM-DNN model [18] as our
main network building block due to its robust accuracy in sin-
gle utterance speech modeling for emotion recognition across a
variety of setups.

Specifically, we proposed a network architecture to perform
per-rater emotion recognition by simultaneously leveraging the
label uncertainty and the co-raters annotations on the IEMO-
CAP [22] and the NNIME [23] database. Due to its enhanced
modeling capacity by including modeling of other raters and
variability of annotations, our proposed model achieves [3.97%,
1.48%] and [1.71%, 2.87%] improvement on average UAR on
the three-class [valence, activation (arousal)] task for four dif-
ferent raters individually on two databases, respectively. We ob-
serve that 1) integrating co-raters’ labels indeed improves target
rater’s recognition rates, 2) when co-training with other raters,
we only need 50% of the target rater’s annotations to achieve
the best performance, 3) soft label training strategy provides
the most robust recognition results.
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Figure 1: An illustration of per-rater’s emotion perception recognition model (L, H, and M means that low, middle, and high class).

2. Research Methodology
Figure 1 illustrates our proposed framework used in this paper.
We propose the model for joint training of three models, where
each one learns from different viewpoints of emotion percep-
tion. In total, there are three basic core components showed
in Figure 1: 1) learning from pooling all other raters’ annota-
tions (soft label), 2) learning from target rater-only annotations,
and 3) learning from majority vote (hard label) from co-raters’
annotations (Note that hard label and soft label excludes tar-
get raters’ annotations). These models are then finally concate-
nated to learn the final per-rater emotion perception recognition
(showed in Figure 1 (c)). The main framework used within each
model is based on the structure proposed in [18], which contains
an initial dense layer, then a bidirectional long short-term recur-
rent network with attention mechanism, and a final dense layer
(BLSTM-DNN) (showed in Figure 1 (a)). In the fusion stage,
we add one concatenate layer and three additional dense layers
with ReLU as activation function [24] and batch normalization
to perform fine-tuning.

2.1. Database and Soft Label Representation

Our framework is evaluated on the IEMOCAP [22] and the
NNIME [23] database. We focus on valence and activation
(arousal) classification since these attributes receive the most
ratings in both databases and the boundaries between categories
of emotion are fuzzy rather than discrete [25]. In addition, an-
notation on valence and activation in both databases are on a 1 to
5 scale (1 is “very negative” (“very active”) and 5 is “very pos-
itive” (“very inactive”) for valence (or activation)). Moreover,
we follow recent works on the IEMOCAP database [19, 26] to
transform raw annotations of each utterance of both databases
into 3-class classification. The middle class equals to the origi-
nal rating of 3, and the other two classes are annotations values
that are smaller than 3 (low class) or higher than 3 (high class).
A hard label is given by majority vote (conventional method),
and a soft label is obtained by dividing each rated value by the
total number of annotations such that the soft label of each sam-
ple sums to one, e.g. if three annotators give labels of 4, 2,
and 1, the soft label would be [0.66, 0.00, 0.33] ([Low, Middle,
High]). To be noticed, this work differs from [26] and follows
[27] setting, which uses all the data even though not all of the
utterances have majority vote (all of them, however, would have
a soft label distribution).

2.1.1. IEMOCAP

IEMOCAP contains about 12 hours of audio-video recordings
of dyadic interactions with 10 different actors split into pairs
over 5 sessions in English. To be noticed, we use leave-

one-session-out cross-validation when evaluating the results of
IEMOCAP. There are 10039 utterances (4784 improvised turns,
5255 scripted turns) in the database that has been given emotion
labels by 2 to 4 annotators. There are 18 unique raters includ-
ing 6 of them who are actors themselves and 12 persons who
are the observed naive raters. Half of the observed raters and
all of the actors annotate emotional dimensional attributes, i.e.,
valence and arousal, on a 1 to 5 scale, and “the other” six ob-
served naive raters and all actors label emotion categories. That
is, there is no same person between two observed naive rater
groups rated both the emotional dimensional attributes and the
emotion categories. In this work, we finally focus on four “ob-
served naive raters” of the IEMOCAP that annotated emotional
dimensional attributes, i.e., E1, E2, E3, and E4, because E5 and
E6 do not have enough samples (only 58). In Table 1 (Per-R),
E1, E2, E3, and E4 in the IEMOCAP are Rater #1, #2, #3, #4.

2.1.2. NNIME

NNIME is a public database that includes approximately 11-
hour worth of audio, video, electrocardiogram data, and tran-
scripts. Audio data were manually segmented. The hypothe-
sized interaction scenario was assumed to be in a real-life home
setting, such as the living room, dormitory, or bedroom, and all
subjects were native Mandarin Chinese speakers. There are in
total of 22 dyadic pairs over six different atmospheres including
happiness, anger, sadness, neutral, surprise, and frustration. We
split these 22 pairs into five groups in the evaluation process.
The original annotations were only given on the continuous-in-
time level or whole-session level. In other words, the NNIME
database did not have sentence-level annotations. Therefore,
we recruited another 7 native Mandarin Chinese speakers as an-
notators (4 females, 3 males) with age ranged from 20 to 31
to label emotional dimensional attributes, such as valence and
activation (arousal). In this work, we only used 4773 speech
utterances (all are improvised turns) and chose four raters of
the NNIME as target raters with the most annotated number of
samples. To collect high-quality annotations, we allowed raters
to change annotations until they were satisfied. In Table 1 (Per-
R), E2, E3, E4, and E5 in the NNIME are Rater #1, #2, #3, #4,
respectively.

2.2. Per-Rater Emotion Recognition
2.2.1. Acoustic Features

We extract acoustic features using the same setting as in [8, 27],
which is based on the emobase.config in the OpenSmile tool-
box [28]. This acoustic feature set extracts frame-level descrip-
tors of loudness, fundamental frequency (F0), voice probability,
zero-cross rate, 12-dimensional Mel-Frequency Cepstral Coef-
ficients (MFCCs), the first derivatives of them, and the second
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Table 1: A summary of results on the three-class valence (Val.) and activation (Act.) for IEMOCAP and NNIME database in UAR (%).
Database Task Per-R Rater∗ OthersH OthersS OthersH−S

Add % Rater 100% 50% 100% 50% 0% 100% 50% 0% 100% 50%

IEMOCAP

Val.

#1 51.67 50.69 53.02 52.28 47.52 53.63 52.46 47.83 53.70 52.86
#2 49.98 47.41 51.67 49.48 47.21 52.12 50.51 48.61 52.01 50.48
#3 51.25 46.48 52.47 51.59 48.34 54.22 53.76 53.45 54.72 53.20
#4 42.37 41.53 50.93 49.85 47.91 51.84 49.82 49.57 50.70 51.22

Act.

#1 58.95 58.33 59.85 59.49 56.38 59.95 58.94 56.03 59.83 59.31
#2 58.20 55.44 58.69 56.74 50.67 59.40 58.27 57.87 59.04 58.17
#3 66.12 62.24 67.10 65.66 55.13 67.26 65.12 57.36 67.17 65.15
#4 54.75 53.79 56.77 55.26 49.96 58.30 57.20 52.31 57.87 56.59

NNIME

Val.

#1 43.91 41.84 45.12 43.93 44.55 45.41 43.66 43.38 45.45 44.17
#2 40.06 39.31 41.60 39.87 38.33 43.13 40.75 41.86 42.75 40.81
#3 44.00 41.06 44.88 43.31 43.01 46.14 45.46 44.77 45.68 45.01
#4 44.24 42.73 43.16 44.35 43.59 44.52 45.31 46.20 45.17 45.88

Act.

#1 53.61 51.19 57.58 55.42 53.49 58.06 55.73 43.46 58.29 56.47
#2 51.97 48.36 53.50 52.33 51.62 54.89 54.59 42.96 55.05 54.56
#3 53.54 51.60 53.96 52.68 50.09 54.58 53.64 41.41 54.63 53.33
#4 51.73 48.07 53.28 51.18 44.60 54.53 52.04 39.59 54.35 52.07

derivatives of MFCCs and loudness. It contains 45-dimensional
acoustic features per frame. All acoustic features are extracted
at 60ms frame length size and 10ms frame step size, which are
further normalized for each speaker using z-score normalization
and downsampled by averaging every 3 frames.

2.2.2. Learning Strategies
The main components of our models are based on the BLSTM-
DNN structure as previously proposed [8, 27]. In this work, our
goal is to account for the label variability and inclusion of co-
raters’ views to perform target rater’s perceived emotion recog-
nition. We train a BLSTM-DNN with two different learning
targets: hard labels and soft labels.

A hard label means that the ground truth is obtained us-
ing a majority of all ratings, e.g., if the ratings are [3, 3, 2] on
one utterance, the ground truth of this data is [0, 1, 0]; how-
ever, this voting processing loses potential emotional informa-
tion that naturally exists in the subjective emotion appraisal.
Therefore, we also use soft labels (Section 2.1) to retain ev-
ery original emotional rating as a target for learning per-rater
perception.

2.2.3. Rater-specific and Co-raters Modeling
Emotion perception varies with person to person on the same
utterance due to the nature of individual idiosyncrasy and sub-
jectivity [29]. We jointly model the target rater’s emotion per-
ception data with co-raters’ data within the IEMOCAP and the
NNIME databases in our proposed recognition architecture. We
define two types of models: Others and Rater∗. In more de-
tail, Others takes all of the annotators’ ratings excluding the
target rater, for example, if we want to perform rater-specific
emotion recognition on Rater1, we exclude data samples from
Rater1s in the training of Others. We further would obtain
two different models depending on whether the learning target
is set to be a soft label or hard label (Section 2.2.2). Moreover,
we use hard label training for all of our Rater∗ models since
each rater gives one rating only on one sample, e.g., training a
model with the utterances annotated by each rater (note the data
amount will be different for each rater).

2.2.4. Final Prediction Layer

We freeze all of the sub-models (the structure is showed in Fig-
ure 1 (b)), i.e., two Others models, and four Rater models,
and concatenate their last layer representation before the soft-

max to be fed into additional three dense layers with ReLU
activation function. Three layers include batch normalization
before the ReLU activation function and a dropout with 50%
dropout rate. Finally, we add softmax layer to perform the final
three-class valence and arousal emotion recognition task. Note
that we only use the target rater’s annotated data in this fine-
tuning stage. The complete structure is illustrated in Figure 1.

3. Experimental Setup and Results
3.1. Experimental Setup

All of our models consist of a major BLSTM-DNN component
which includes two dense layers with the ReLU activation func-
tion, one BLSTM with attention mechanism layer, and finally
one dense layer with softmax function (classification layer).
The number of hidden units in the IEMOCAP (in the NNIME)
are [256, 128, 256, 3] ([128, 64, 128, 3]) in the first dense layer,
BLSTM with attention mechanism layer, the last dense layer,
and classification layer, respectively. In the late fusion stage,
the number of hidden units in the IEMOCAP (in the NNIME)
in the three-layer deep neural network and the final prediction
layer are [256, 128, 256, 3] ([128, 64, 128, 3]), respectively. A
dropout layer is added for all layers excluding prediction layers
with 50% dropout rate.

All experiments are evaluated using leave-one-session-out
cross-validation and five-fold cross-validation with the metric
of unweighted average recall (UAR) on the IEMOCAP and the
NNIME databases, respectively. The batch size and learning
rate in the IEMOCAP (in the NNIME) are 64 and 5*1e-4 (5*1e-
3), respectively, and the number of the epoch is 200 with early
stopping criteria in all conditions with cross-entropy loss mini-
mization. All of the hyper-parameters are selected based on the
validation set. ADAMMAX is used as the optimizer.

3.1.1. Models Comparison

We compare different results obtained for each of components
of our complete architectures:
Rater∗ model: Every Rater∗ model is trained with the rater-
specific annotated utterances only using the target rater’s anno-
tation as the learning target.
OthersS model: This model uses all annotated utterances ex-
cluding the target raters utterances with soft label as the learning
target. (Note that the utterances used here must be labeled by at
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Table 2: A summary of average results (UAR) from Rater∗,
OthersH , and OthersH using 100% per-rater’s annotations
over four raters on the high (H), middle (M), low class (L) va-
lence (Val.) and activation (Act.) for IEMOCAP and NNIME
database in UAR (%).

Database Task 3-Class Rater∗ OthersH OthersS

IEMOCAP

Val.
H 69.48 68.41 68.30
M 52.80 60.80 59.65
L 45.78 45.20 46.12

Act.
H 69.48 68.41 68.30
M 42.70 46.64 49.93
L 66.33 66.75 65.45

NNIME

Val.
H 41.62 58.71 54.38
M 66.80 48.29 53.38
L 20.74 24.06 26.64

Act.
H 57.41 64.33 62.30
M 28.85 27.16 33.64
L 71.88 72.25 70.59

least two other raters excluding target rater, the same criterion
is applied to the OthersH model).
OthersH model: This model uses all annotated utterances
with co-raters’ consensus voting.
Proposed model (Others and Rater∗ fusion): This model
is our proposed model that combines all co-rater’s Others
model (training target can be either soft, hard or both), and then
it is added with the Rater∗ target rater’s own model trained
with 0%, 50%, and 100% of the total target rater’s annotated
utterances, respectively.

3.2. Experimental Results and Analyses

Table 1 shows the complete recognition results. Our proposed
framework obtains the best overall emotion recognition accu-
racy for Rater1, Rater2, Rater3, and Rater4 in the IEMO-
CAP on three-class [valence, activation (arousal)] with UAR
of [53.7%, 59.95%], [52.12%, 59.40%], [54.72%, 67.26%],
and [51.84%, 58.30%], respectively. Moreover, the best over-
all results for Rater1, Rater2, Rater3, and Rater4 in the
NNIME obtains UAR of [45.45%, 58.29%], [43.13%, 55.05%],
[46.14%, 54.63%], and [45.17%, 54.53%], respectively. The
proposed method surpasses Rater∗ models (trained with 100%
of target rater’s annotated utterances) by [2.14%, 1.00%]
([1.54%, 4.68%]), [3.07%, 3.08%] ([2.14%, 1.00%]), [3.47%,
1.14%] ([2.14%, 1.09%]), and [9.48%, 3.55%] ([0.93%, 2.8%])
absolute in the IEMOCAP (in the NNIME), which indicates the
importance in leveraging co-rater s’ labeling information.

To be more specific, our methods achieve [3.97%, 1.48%]
and [1.71%, 2.87%] improvement on average unweighted ac-
curacy recall (UAR) on the three-class (low, middle, and high
class) [valence, activation (arousal)] emotion recognition task
for four different raters on the IEMOCAP and the NNIME, re-
spectively. According to the results, our proposed method, espe-
cially OthersS , provides a larger boost on three-class valence
and arousal tasks on both databases, and Rater∗, fusing co-
rater’s soft label information provides more stable recognition
rates than other types of fusion combinations.

One key observation is that even when reducing the Rater∗
model’s training data to a half, most of the proposed method
can achieve higher performance than simply using Rater∗ with
100% of annotated training utterances. This insight demon-
strates the potential application in real-world scenarios when
it is difficult to collect a large number of target rater’s emotion
perceptual annotations, but the model can learn from co-raters’
information.

Especially, in Table 2, OtherS with soft label training ob-

Table 3: A summary of Root Mean Square Error (RMSE) be-
tween the annotations of Rater∗ and OthersH (showed in
OthersH column), Rater∗ and OthersS (showed in OthersS
column).

Database Per-R Task OthersH OthersS Task OthersH OthersS

IEMOCAP

#1

Val.

0.421 0.423

Act.

0.529 0.506
#2 0.379 0.395 0.555 0.520
#3 0.325 0.356 0.643 0.573
#4 0.358 0.382 0.572 0.520

NNIME

#1

Val.

0.385 0.358

Act.

0.511 0.445
#2 0.418 0.377 0.451 0.397
#3 0.364 0.340 0.558 0.469
#4 0.397 0.363 0.603 0.515

tains better recognition rates for low class and middle class
on valence and activation task than OtherH with hard label
training. On the other hand, OtherH with hard label training
achieves a better recognition rate for low class on activation task
than OtherH with hard label training.

Furthermore, even if we do not have the target raters anno-
tation at all, we compare two types of Others models with the
soft label and hard label training. The results show that using
soft label training is overall better than using hard label train-
ing. We further compute the Root Mean Square Error (RMSE)
as measures of concordance between different labeling used as
a learning target in our work. According to Table 3, we show
that the Root Mean Square Error (RMSE) between OthersS
and Rater∗ is larger than OthersH and Rater∗, but the per-
formance of OthersS is still better than OthersH ’s, which in-
dicates the variability in the soft label learning strategy provides
a more robust representation even when used in facilitate learn-
ing to recognize the target rater’s perception. Interestingly, we
also observe that learning to use the distributional label in the
IEMOCAP database is indeed useful in predicting higher-level
emotional dimension, valence. This finding is similar as the pre-
vious work [26] when using soft label training on cross-corpus
valence tasks.

By including Others model as an additional representa-
tion in late fusion, our proposed method can learn to integrate
multiple complementary information from different perceptual
viewpoints. Moreover, our experiments demonstrate that com-
pared to the conventional method (hard label), the soft label is a
better alternative way to model different emotion perception of
each annotator.

4. Conclusion
Understanding how an individual perceives one another’s emo-
tional state is important as it often underlies our decision-
making process and impacts task performances. In this work,
we propose a framework that jointly models different view-
points of emotion perception from co-raters labeling in improv-
ing target rater’s emotion perception recognition. Our methods
achieve [3.97%, 1.48%] and [1.71%, 2.87%] improvement on
average UAR on the three-class [valence, activation] emotion
recognition task for four different raters on the IEMOCAP and
the NNIME databases, respectively. To the best of our knowl-
edge, while there are recent works in studying individualized
emotion recognition, this is one of the first works that have inte-
grated co-raters’ emotion labeling to focus a target rater’s emo-
tion perception to enable individualized emotion-sensing mod-
ule. In the future, we would investigate more in detail specifi-
cally what are some of the key differences between individual
annotators when they rate the same behavior data, and how it re-
lates to the annotator’s personal emotional experiences to obtain
further insights on the variability of emotion perception.
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